Bactericidal effects of 8,9-dihydroxy-1,5,6,10b-tetrahydropyrrolo[2,1-a]isoquinolin- 3(2H)-one (Trolline) on selected entero-pathogenic bacteria

Masud Eneji Sadiq, Abdullahi Mikailu S


The activity of the compound 8,9-dihydroxy-1,5,6,10b-tetrahydropyrrolo[2,1-a]isoquinolin-3(2H)-one (trolline) isolated from Mirabilis jalapa against selected enteropathogenic bacteria is being investigated. Clinical isolates of Streptococcus feacalis, Shigella dysenteriae, Salmonella typhi, Bacillus cereus, Eschericia coli and Vibrio cholera were screened for susceptibility to serial dilutions of an initial stock concentration of 100µg/ml (456.62µM) of the compound. Zones of inhibition on well labeled sub-cultured agar plates were measured in millimeters and recorded. The minimum inhibitory concentration (MIC) was determined using broth dilution methods while the least concentration that killed the bacterial cells was recorded as the minimum bactericidal concentration (MBC). S. typhi, B. cereus, E. coli and S. dysenteriae were susceptible to the test compound, with zones of inhibition measuring 32mm for S. dysenteriae. MIC of 57µM was observed for S. typhi, B. cereus and S. dysenteriae while bactericidal concentration (MBC) ranged between 114-228µM for all susceptible organisms tested. In conclusion, the in-vitro assessment of trolline shows the compound possess bioactive properties against diarrhea causing enteropathogenic bacteria.


Trolline, Mirabilis jalapa, enteropathogenic bacteria, antibacterial

Full Text:



Okeke IN, Aboderin OA, Byarugaba DK, Ojo KK, Opintan JA Growing problem of multidrug-resistant enteric pathogens in Africa. Emerg Infect Dis. 2007; 13(11):1640-1646.

Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 2015; 6:22-29.

Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A. et al.. Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet 2016; 387(10014):176-187.

Prendergast AJ, Kelly P. Interactions between intestinal pathogens, enteropathy and malnutrition in developing countries. Curr Opin Infect Dis 2016; 29(3):229-236.

Crocker J. Bartram J. Interpreting the Global Enteric Multicenter Study (GEMS) Findings on Sanitation, Hygiene, and Diarrhea. PLoS Med 2016; 13(5): e1002011.

Petri WA, Miller M, Binder HJ, Levine MM, Dillingham R, Guerrant RL. Enteric infections, diarrhea, and their impact on function and development. J. Clin. Invest. 2008; 118(4):1277-1290.

Viswanathan VK, Hodges K, Hecht G. Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea. Nature Reviews Microbiology 2009; 7(2):110-119.

Hodges K, Gill R. Infectious diarrhea: Cellular and molecular mechanisms. Gut Microbes 2010; 1(1):4-21.

Encarnacion DR, Virgen M, Ochoa N. Antimicrobial activity of medicinal plants from Baja California Sur (Mexico). Pharm Biol 1998; 36:33–43.

Holdsworth DK. A preliminary study of medicinal plants of Easter Island, South Pacific. Int J Pharmacogn 1992; 30:27–32.

Comerford SC. Medicinal plants of two Mayan healers from San Andŕes, Peten, Guatemala. Econ Bot 1996; 50:327–336.

Shaik S, Rajendra Y. Jaya Chandra Reddy, P. Phytochemical and pharmaclogical studies of mirabilis jalapa linn. Int J Pharm Technol. 2012; 4(2): 2075-2084.

Zhou JY, Zhou SW, Zeng SY, Zhou JY, Jiang MJ, He Y. Hypoglycemic and hypolipidemic effects of ethanolic extract of Mirabilis jalapa L. root on normal and diabetic mice. Evid Based Complement Altern Med 2012; 257374.

Nath LR, Manjunath KP, Savadi RV, Akki KS. Anti-inflammatory activity of Mirabilis jalapa linn. Leaves. J Basic Clin Pharm 2010; 1(2): 93-96.

Eneji SM, Inuwa HM, Ibrahim S, Ibrahim AB Abdulfattah A. In vitro assessment of bioactive components of Mirabilis jalapa ethanolic extract on clinical isolates of Salmonella typhi and Bacillus cereus. Afr J Biotechnol 2011; 10 (71):16006-16011.

Oladunmoye M. Antioxidant, free radical scavenging capacity and antimicrobial activities of Mirabilis jalapa. J Med Plant Res 2012; 6(15):2909–2913.

Zachariah SM, Viswanad V, Aleykutty NA, Jaykar B, Halima OA Free radical scavenging and antibacterial activity of Mirabilis jalapa linn using in vitro models. Asian J Pharm Clin Res 2012; 5(3):115-120.

Sadiq ME. Isolation and Spectroscopic Identification of Some Constituents of Bioactive Fractions of Aerial Parts of Mirabilis Jalapa. IOSR-JAC 2016; 9(4):12-17.

Xiang L, Xing D, Wang W, Wang R, Ding Y, Du L. Alkaloids from Portulaca oleracea L. Phytochemistry 2005; 66(21):2595-2601.

Li-Jia LIU, Xiu-Wen WU, Ru-Feng WANG, Yu-Shuai PENG, Xin YANG, Jun-Xiu LIU. Absorption properties and mechanism of trolline and veratric acid and their implication to an evaluation of the effective components of the flowers of Trollius chinensis. Chin J Nat Med 2014; 12(9):700-704.

EUCAST Discussion Document. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 2003; 9(8): 1-7.

Meera R, Devi P, Muthumani P, Kameswari B, Eswarapriya B. In vitro antimicrobial activity of various extracts of mirabilis jalapa leaves. Int. J. Chem. Sci. 2010; 8(1):559-564.

Muthumani M, Devi P, Meera R, Kameswari B, Eswarapriya B. In vitro antimicrobial activity of various extracts of Mirabilis jalapa leaves. Internet J Microbiol 2010; 7(2):120-124.

Wang RF, Yang XW, Ma CM, Cai SQ, Li JN, Shoyama Y. A bioactive alkaloid from the flowers of Trollius chinensis. Heterocycles 2004; 63(6):1443-1448.

Mikhailovskii AG, Shklyaev VS. Pyrrolo [2, 1-a] isoquinolines (review). Chem Heterocycl Compd 1997; 33(3):243-265.

Yang Z, LiuC, Xiang L, Zheng Y. Phenolic alkaloids as a new class of antioxidants in Portulaca oleracea. ‎Phytother. Res 2009; 23(7):1032-1035.

Kanemitsu T, Yamashita Y, Nagata K, Itoh T. Synthesis of (-)-Trolline (-)-Crispin A and (-)-Crispine E. Heterocycles 2008; 74:199-204.

Moreno L, Párraga J, Galán A, Cabedo N, Primo J, Cortes D. Synthesis of new antimicrobial pyrrolo [2, 1-a] isoquinolin-3-ones. ‎Bioorg. Med. Chem 2012; 20(22):6589-6597.

Dumitrascu F, Georgescu E, Georgescu F, Popa MM, Dumitrescu D. Synthesis of Pyrrolo [2, 1-a] isoquinolines by Multicomponent 1, 3-Dipolar Cycloaddition. Molecules 2013; 18(3):2635-2645.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Copyright (c) 2017 International Journal of Pharmacological Research

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.