Effects of subcranial myofascial distraction and condylar remodeling exercises on temporomandibular disability index score in patients with temporomandibular joint disorders

Shilpa V. Chourasia*, Priyanka Deshmukh2 and Rahi Sunil Wankar3

1Associate Professor, Head of Kinesiotherapy and Kinesiology Department, V.S.P.M’s College of Physiotherapy, Nagpur, India
2Clinical Physiotherapist, V.S.P.M’s College of Physiotherapy, Nagpur, India
3PG Student, V.S.P.M’S College OF Physiotherapy, Nagpur, India

*Correspondence Info:
Dr. Shilpa V. Chourasia
Associate Professor,
Head of Kinesiotherapy and Kinesiology Department,
V.S.P.M’s College of Physiotherapy, Digdoh, Nagpur, India

*Article History:
Received: 14/06/2017
Revised: 04/07/2017
Accepted: 04/07/2017
DOI: https://doi.org/10.7439/ijbar.v8i7.4238

Abstract

Background- The patients with temporomandibular joint disorders will be likely to benefit from combination of subcranial myofascial distraction and condylar remodeling exercises.

Aim of the study- To study effects of subcranial myofascial distraction and condylar remodeling exercises in patients with temporomandibular joint disorders.

Methods- A randomized control trial, in which 120 patients were selected using block randomisation method, was carried out. They were divided into 3 groups of 40 each, Group A- subcranial myofascial distraction, Group B- combination of subcranial myofascial distraction and condylar remodeling exercises, Group C- condylar remodeling exercises alone. These patients were assessed for outcome measure i.e. temporomandibular disability index score. The frequency of therapeutic protocol for subcranial myofascial distraction was 3 repetitions of 90 seconds hold period each, rest period of 60 seconds between two repetitions. This intervention was given for 6 days/week for 2 weeks. Every exercise in condylar remodeling exercises was performed 6 times in one session under the supervision of physiotherapist and same session was performed at home by the patient preferably in evening for 6 days/week for 2 weeks.

Results: The data was analyzed using one way ANOVA, repeated measure ANOVA, Kruskal Wallis Non parametric ANOVA test. Patients receiving a combination of subcranial myofascial distraction and condylar remodeling exercises (Group B) showed greater improvement compared to other two groups (Group C and A).

Conclusion: Subcranial myofascial distraction and condylar remodeling exercises help in decreasing disability associated with temporomandibular joint disorder.

Keywords: Temporomandibular joint, temporomandibular disorder, subcranial myofascial distraction and condylar remodeling exercises, temporomandibular disability index score.

1. Introduction

The stomatognathic system is an integral part of the musculoskeletal system.[1] This complete kinetic chain is also referred as cranio-cervico-mandibular system. Stomatognathic system is characterised by several structures which act in harmony to perform different functional tasks such as communication, mastication, swallowing, stabilization and proprioception.[2]

Temporomandibular joint, a component of stomatognathic system, is one of the most frequently used joints in the body [3] and is responsible for all movements...
Musculoskeletal structural disorders of the masticatory system are frequent: 50% to 75% of the population presents at least one sign of temporomandibular disorder (TMD) and among these, 25% present symptoms of this disorder [5]. According to Karolina Dragon (2011), 8 out of 10 patients coming to the dentist are found to have temporomandibular disorders. [1]

In a study by Solberg (2014), 76% of subjects aged 18–25 years had one or more signs associated with temporomandibular disorders and 26% had at least one symptom associated with temporomandibular disorders [6]. Although temporomandibular joint (TMJ) problems can occur in individuals of any age, they are most common in individuals 18 to 30 years of age. Activities nowadays, the assessment of the existence of a significant relationship between neck pain and temporomandibular disorders could be of important practical relevance [1]. This kinetic link is still far from being clarified. Its relevance has been pointed out by different authors and also by the American Academy of Orofacial Pain, which in its guidelines considers evaluation of evaluation of the range of motion and palpation of cervical muscles to be an important part of the diagnostic protocol for identification of craniomandibular disorders. [6]

Patients who present with dysfunctions of cranio-cervico-mandibular chain can be treated effectively by a physical therapist that has specialized skills and experiences. For effective, long lasting management of patients with temporomandibular disorders, inclusion of a physiotherapist in a team is essential but role of physiotherapist is not evident among dentists. [8] Patients who present with dysfunctions of cranio-cervico-mandibular chain can be treated effectively by a physical therapists who are able to use a more standardized classification and better diagnostic and therapeutic methods to offer patients a wide range of treatment modalities with higher success rates [8, 15].

Physical therapy management of temporomandibular disorder, a multifactorial syndrome, often consists of physical modalities, postural re-education, soft tissue mobilisation, therapeutic exercise for neuromuscular stabilisation of the temporomandibular joint, manual therapy including temporomandibular joint mobilisation. [9] Moreover, manual therapy is the most commonly used approach in management of spinal conditions and useful method for temporomandibular disorder management as stated by Aysener Tuncer (2011).

Myofascial release technique known as Subcranial Myofascial distraction is frequently used in cervical spine disorders to achieve the most efficient movement patterns that the patient’s body can maintain with the least amount of effort while minimizing or eliminating the patient’s pain complaint. [10]

Furto et al (2006) used a temporomandibular joint exercise program developed by Rocabado called “Condylar remodeling exercises”. These are the effective self regulatory and neuromuscular relaxation training exercise which is thought to increase functional mobility and motor control around temporomandibular joint. [9]

However, there are no well-designed studies that demonstrate that treatment provided by physical therapist to cervical spine has an influence on temporomandibular dysfunction and the resulting complaints [11], this study is the step with a aim of assessing effects of subcranial myofascial distraction and condylar remodeling exercises in patients with temporomandibular joint disorders.

1.1 Objective

To evaluate effects of subcranial myofascial distraction and condylar remodeling exercises on temporomandibular disability index score in patients with temporomandibular joint disorder.

2. Methods

A randomized control trail was carried out amongst 120 patients with temporomandibular joint disorder. Individuals of both genders in the age group of 18-30 years who were diagnosed as temporomandibular disorder were included in the study. Post surgical, degenerative and traumatic conditions related to temporomandibular joint and cervical spine were excluded. Effects of subcranial myofascial disctraction and condylar remodeling exercises in patients with temporomandibular joint dysfunction were evaluated by assessing change in temporomandibular disability index score.

Numbers of patients were divided into:
Group A (n=40) subcranial myofascial distraction
Group B (n=40) combination of subcranial myofascial distraction and condylar remodeling exercises
Group C (n=40) condylar remodeling exercises

Subcranial myofascial distraction and/or condylar remodeling exercises were given to all 3 groups for 6 days per week for 2weeks. Post intervention assessment was done at the end of 1st and 2nd week.

Subcranial myofascial distraction (Group A and Group C): 3 repetitions of subcranial myofascial distraction, with hold period of 90 seconds each and rest period of 60
seconds between 2 repetitions were given for 6 days / week for 2 weeks.

Condylar remodeling exercises (Group B and Group C) included range of motion phase, bite phase, bite return phase, protrusion, isometric contraction phase and tubing distraction. Each exercise was performed 6 times in one session under the supervision of physiotherapist and same session was performed daily at home by patient for 6 days/ week for 2 weeks.

Figure 1: Condylar remodeling exercises
3. Results and data analysis

Data analysis was done by using One way ANOVA; To compare mean age between group A, group B, group C. Repeated measure ANOVA was used To compare temporomandibular disability index score among group A, group B and group C prior intervention (subcranial myofascial distraction and condylar remodeling exercises) and post intervention at the end of 1st and 2nd week. One Way Non-parametric ANOVA: To compare the changes in temporomandibular disability index score among group A, group B and group C after giving intervention (subcranial myofascial distraction and condylar remodeling exercises) at 1st and 2nd week from prior test. Kruskal Wallis Non parametric ANOVA test: To measure temporomandibular disability index score among group A, group B and group C after giving intervention (subcranial myofascial distraction and condylar remodeling exercises) at 1st and 2nd week.

Table 1: Pre intervention and post intervention TMD disability index score in Group A, Group B and C

<table>
<thead>
<tr>
<th>Group</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre intervention</td>
<td>16.95±9.32</td>
<td>25.42±9.55</td>
<td>25.47±9.34</td>
</tr>
<tr>
<td>Post intervention 1st week</td>
<td>15.37±8.39</td>
<td>22.75±8.85</td>
<td>23.67±9.09</td>
</tr>
<tr>
<td>2nd week</td>
<td>13.22±7.97</td>
<td>16.67±7.60</td>
<td>19.15±8.80</td>
</tr>
<tr>
<td>F-value</td>
<td>34.93</td>
<td>238.48</td>
<td>176.41</td>
</tr>
<tr>
<td>p-value</td>
<td><0.0001, HS</td>
<td>0.0049, HS</td>
<td>0.0009, HS</td>
</tr>
</tbody>
</table>

Figure 2: TMD disability index score between 3 groups

Statistically highly significant decrease in TMD disability index score in group A, group B and group C was noted as p<0.0001, prior and post intervention at 1st and 2nd week.

Table 2: Comparison of mean change in TMD disability index score with intervention between 3 groups

<table>
<thead>
<tr>
<th>Time (week)</th>
<th>Group A</th>
<th>Group B</th>
<th>Group C</th>
<th>KW statistics (Chi² Value)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st week</td>
<td>1.57± (9.3)</td>
<td>2.67± (10.5)</td>
<td>1.8± (7.06)</td>
<td>10.64</td>
<td>0.0049, HS</td>
</tr>
<tr>
<td>2nd week</td>
<td>3.72± (22.2)</td>
<td>8.75± (34.4)</td>
<td>6.32± (24.5)</td>
<td>35.47</td>
<td>0.001, HS</td>
</tr>
</tbody>
</table>

Comparison of mean change in TMD disability index score revealed statistically highly significant decrease in TMD disability score with intervention at the end of 1st and 2nd week.

Table 3: Comparison of mean changes post intervention in TMD disability score at end of 1st and 2nd week between 3 groups

<table>
<thead>
<tr>
<th>Comparison</th>
<th>At 1st week</th>
<th>At 2nd week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A vs Group B</td>
<td>1.0 (0.0059)</td>
<td>5.20 (0.0001)</td>
</tr>
<tr>
<td>Group A vs Group C</td>
<td>0.22 (0.075)</td>
<td>2.6 (0.0007)</td>
</tr>
<tr>
<td>Group B vs Group C</td>
<td>0.875 (0.00354)</td>
<td>2.42 (0.0009)</td>
</tr>
</tbody>
</table>

Group wise comparison of change in TMD disability index score with intervention revealed statistically significant change in group A and group B (p=0.0059 and <0.0001).

Comparison between group A and Group C showed statistically non significant change at end of 1st week (p=0.075), highly significant change at end of 2nd week and (p=0.007); And highly significant result was obtained when group B and group C was compared (p=0.00354 & 0.0009); Thus, TMD disability index score was decreased more in group B than group C than group A.

4. Discussion

An interventional randomized control trial was carried out amongst 120 patients aged between 18 to 30 years with the aim of investigating whether subcranial myofascial distraction and condylar remodeling exercises are effective for management of patients with temporomandibular disorder.

Post intervention week wise improvement in the temporomandibular disability index score was statistically highly significant (p=0.0001) in all three groups. Intergroup comparison revealed that improvement in temporomandibular disability index score was more in Group B which received combination of subcranial myofascial distraction and condylar remodeling exercises, than Group C (condylar remodeling exercises), than Group A (subcranial myofascial distraction).
The close correlation of temporomandibular disorders with cervical spine disorders has been reported by several researches. They concluded that patients who have temporomandibular disorder report neck symptoms more frequently than patients who do not have temporomandibular disorders. At the same time, patients who have neck pain report more signs and symptoms of temporomandibular disorders than those who have no neck pain.\[17\]

Cristiane Pedroni [12] reported that stomatognathic and cervical systems should be considered functionally as one. The abnormal function of muscles and joints of the cervical region can be a probable cause for the greater frequency of pain in the orofacial region due to the functional relation between temporomandibular Joint (TMJ) and the craniocervical region where movements of atlanto-occipital joint and cervical vertebrae occur concomitantly with activation of masticatory muscles and jaw movements. Therefore, myofascial imbalance in this region could lead to disruption of motor control, compromising normal mandibular function.\[18\]

In the current study, positive effects of subcranial myofascial distraction technique on temporomandibular disorders is explained by interconnection between cervical spine and temporomandibular joint in terms of neurophysiological, biomechanical and neuroanatomical aspects.

Neurophysiologically, there is convergence and central excitatory connection between trigeminal nerve and trigeminocervical nucleus. Biomechanically, temporomandibular system and cervical spine behave as one functional unit. Co-contraction can be observed with jaw and neck muscles during activities like chewing, talking, and yawning.\[15\] Masticatory muscles contract in response to the contraction of cervical spine muscles as these muscles act as agonist and antagonist to one another.

Muscle abuse caused by postural malalignment, occupational stress, micro trauma etc. causes myofascial imbalance characterised by hypertonicity of certain muscles of cervical spine especially extensors.

Manual therapy technique such as subcranial myofascial distraction when applied to cervical spine normalises cranio-cervico-mandibular chain by reversing sequence of events of muscular imbalance. Subcranial myofascial distraction have a damping influence on the gamma activity by reducing threshold within the facilitated segment i.e. cervical extensors and thus open a window of opportunity for the central nervous system to normalize level of neural activity. These results in cervical extensors relaxation, which are linked with masticatory muscles; consequently normalising muscle activity around temporomandibular joint and gaining a positive change in mobility at temporomandibular joint [19].

Another effect of subcranial myofascial distraction which results in increased range of motion is decrease in the internal pressure of articulars attained by longitudinal traction, which allows an influx of synovial fluid responsible for articular lubrication.\[18\] One of the most powerful effects of subcranial myofascial distraction technique is the ability to re-train patterns of motor signals in body, and establish new pathways by activating type I mechanoreceptors. Stimulation of these mechanoreceptors caused by this technique contributes to the gain in range of motion as they participate in regulating postural and muscular tonus.

According to Carmeli et al, use of combined manual therapy and exercise reduces pain and causes increased range of motion in patients with articular temporomandibular disorders. Hence, they suggested that exercises should be incorporated along with manual therapy for appropriate management of temporomandibular disorder patients.

Condylar remodelling exercises are aimed to facilitate neuromuscular stabilization through the use of repetitive lateral deviation motions purportedly used to assist with mobility. Theoretically, muscles of mastication are then recruited to apply a compressive force to the disk, thereby improving condylar-disk-eminenacy congruency and ultimately improving function. These techniques can also be used as a proprioceptive exercise to increase functional mobility with lowered pain response.\[11\]

Condylar remodeling exercises stimulates mechanoreceptors which are specialised end organ that converts mechanical energy of physical deformation into action nerve potential yielding proprioceptive information, detecting change and rate of change, as opposed to steady state conditions. This input which is analysed in the central nervous system for joint position and movement influences muscle tone, motor execution programmes and kinaesthetic awareness around temporomandibular joint protecting joint from damage and helps to restore appropriate balance of synergistic and antagonistic forces.\[21\]

Improvement in joint mobility directly influences disability and functional capacity associated with same joint. The percent improvement in eating which is one of the normal living activities in disability index was 12.5 % in group A, 32.5% in group B and 15% in group C respectively, percent improvement in talking in group A was 12.5%, Group B was 27.5 %, Group C was 7.5%, approximately similar results in headache symptoms were observed, where group B showed more improvement.
5. Conclusion
The current study demonstrated that subcranial myofascial distraction and condylar remodeling exercises when used in conjunction with one another over a period of 2 weeks provides both statistically significant and practically relevant improvement in temporomandibular disability score. When subcranial myofascial distraction and condylar remodeling exercises were studied individually, both have improved temporomandibular disability score.

6. Clinical implication
Functional jaw movements are the result of unrestricted activation of jaw as well as head and neck muscles, leading to simultaneous movements in the temporomandibular, atlantooccipital and cervical spine joints.

Hence, in the treatment of temporomandibular joint dysfunction, the clinician should understand that it is a complex that is being dealt with and management should include treatment of other links of this kinetic chain like cervical spine which can influence the temporomandibular joint directly or indirectly.

Manual therapy techniques like subcranial myofascial distraction used to improve movement potentials, reduce restrictions, ease pain and to restore normal function to previously dysfunctional tissues can be highly efficacious for improving and maintaining myofascial harmony of complete kinetic chain i.e. stomatognathic system.

Condylar remodeling exercises improve extensibility of specific muscles around orofacial area and should be taught to the patient to augment prognosis. These exercises are easy to perform, so they can be included in the home exercise program.

Physiotherapists should be an important member of the group of health practitioners who work with patients of these disorders. Hence, awareness about the role of physical therapist in TMDs should be inculcated amongst physicians and dentists.

Thus, interdisciplinary co-operation between the dentist & physiotherapist is essential to reduce physical, social & psychological impact of chronic conditions of stomatognathic system like temporomandibular disorder.

7. Limitations
Intervention was given for a short duration i.e. two weeks and follow up was not taken thereafter.

References