Monoclonal antibodies and its impact on modern health services – A review

Das S¹, Sehgal VK² and Vardhan A*³

¹Post Graduate Resident, Department of Pharmacology, Govt Medical College Patiala, Punjab, India
²Associate Professor, Department of Pharmacology, Govt Medical College Patiala, Punjab, India.
³Senior Resident, Department of Pharmacology, Andaman & Nicobar Islands Institute of Medical Sciences, Port Blair, India.

*Correspondence Info:
Dr. Anand Vardhan,
Senior Resident,
Department of Pharmacology,
Andaman & Nicobar Islands Institute of medical sciences,
Port Blair, India.

*Article History:
Received: 24/01/2017
Revised: 01/07/2017
Accepted: 01/07/2017
DOI: https://doi.org/10.7439/ijpr.v7i7.3897

Abstract
Recent developments in the ability to manipulate immunoglobulin genes have led to development of monoclonal antibodies directed against therapeutic targets. Nowadays, Monoclonal Antibodies act as useful therapies in case of diseases like Cancer, Autoimmune diseases, Infectious diseases and also in conditions like Transplant rejections. The dream of Monoclonal antibodies has been achieved due to advent of Hybridoma technology in 1975.

Monoclonal antibodies are one of the most upcoming fields in biopharmaceutical sciences. The role they have played has brought a revolution in the sector of health services. Not only as a therapeutic tool, has its role also touched the topics of analysis, purification, enrichment and also in mediation of physiological responses. Today, it is continuing to become a befitting reply to various notorious diseases, for which, health professionals had waited for a long time. The purpose of this manuscript is to bring forward, in brief, the role played by Monoclonal antibodies in health sector, various studies related to this marvellous therapeutic tool and the scope; it carries in the near future, and for many years to come.

Keywords: Monoclonal antibodies, Hybridoma technology, Immunoglobulin, Human mAbs, Cell Engineering.

1. Introduction
Monoclonal antibodies are immunoglobulins of a single molecular type which react with target proteins of desired antigens. [1] Monoclonal antibodies are generally of 2 types: Murine Monoclonal antibodies and Chimeric Monoclonal antibodies. [2] Monoclonal antibodies bind to the same epitope and are produced from a single B-lymphocyteclone. They were first generated in mice in 1975 using a hybridoma technique. [3] Hybridoma technology was discovered in 1975 by two scientists, Georges Kohler of West Germany and Cesar Milstein of Argentina, who along with Niels Jerne of Denmark were awarded the Noble prize for Physiology and Medicine in 1984.[4] Monoclonal antibodies are nowadays used for many diagnostic and therapeutic applications. The popularity for these biopharmaceuticals has led to the development of large-scale manufacturing processes, with productivity improvements and their optimization. [5]

Due to their extreme specificity, Monoclonal antibodies have been pivotal for analytical advances in the field of medical research, diagnosis, therapy, and basic science thus, achieving marked successes in clinical settings [6] Monoclonal antibodies has brought a revolution in field of diagnostic science with their specificity towards specific antigen and almost unlimited production. They can be produced against any antigen and are completely homogeneous populations, entailing fewer problems of cross reactivity. [7] The US Food and Drug Administration has approved more than 20 mAbs, and more than 150 other mAbs are currently in clinical trials.[8] Thus, we can say...
that their use in diagnostic assays and in therapeutics has made a significant impact in the improvement of health in both humans and animals.[9]

2. How are monoclonal antibodies produced?

Monoclonal antibodies are of 2 types: Murine and Chimeric. Generally Chimeric Monoclonal antibodies are used as they show half human half mouse characteristics thus, showing less immunogenicity, whereas Murine monoclonal antibodies may induce a Human-Antimouse allergic response. Monoclonal antibodies are produced by fusing immortal myeloma cells with the B lymphocytes which produces antibody against a desired antigen.[2] A selective medium in which only fused cells can grow is used. That medium is called HAT medium as it contains Hypoxanthine, Aminopterin, and Thymidine. This medium is selective for fused hybridoma cells.[10] Polyethylene Glycol is used as fusing agent in order to fuse adjacent plasma membranes[11] Unfused myeloma cells are unable to grow in HAT medium as they lack Hypoxanthine Guanosine Phosphoribosyl Transferase (HGPRT), and thus cannot make DNA. Free B lymphocytes cannot grow because of their short life span. Only fused hybrid cells can grow in HAT medium. This is due to the reason that B lymphocytes partners produce HGPRT. [12] Selection of hybridomas secreting desired antibodies is quite lengthy. A rapid, reliable, versatile, sensitive and easily performing screening assay should be there. The most commonly used system regarding this, is the enzyme linked immunosorbent assay (ELISA). Antibodies can also be detected by radio immunoassay (RIA), immune fluorescence and haemolytic plaque assays. [13]

3. Drawbacks of early monoclonal antibodies

Orthoclone OKT3ie muromonab-CD3 was the first licensed monoclonal antibody, which was approved in 1986 for use in preventing kidney transplant rejection.[14] Its use was limited to acute cases because of side effects.[15] Production of early monoclonal antibodies was limited by availability of a suitable myeloma cell line (usually mouse or rat). Hybridomas were also found to be low yielding or unstable. [16] Expression systems regarding monoclonal antibodies have been tested, each having contrasting effects. E. coli was an excellent system for expression of antibody fragments like single-chain variable fragments and antigen-binding fragments.[17] The transformation efficiency, and purity of humanised monoclonal antibodies, has been low regarding using of transgenic animals.[18] With time, a concept involving use of animal species regarding production of humanised antibodies began.[19]

4. Improvements made in the field of hybridoma technology

Some efforts have been made in order to upgrade the system of Hybridoma technology. Production of Monoclonal antibodies could be enhanced, these points comprise of the following:

a) Chemical fusion promoter such as Polyethylene Glycol was substituted for Sendai virus to fuse adjacent cell membranes.

b) Myeloma cells that do not secrete their own antibodies were selected for this purpose as they do not interfere with the production of the required antibody.[4]

c) The ability of an Antigen to bind with such Antibodies can be improved by using phage display libraries in order to select antibodies, possessing high affinities for the antigen. Many times often, antibodies having lower affinity for the antigen may be chosen in hopes of better penetration of a tumour [20].

5. Purification

Monoclonal antibodies are purified with the help of 2 methods:

- Ion-exchange chromatography
- Antigen affinity chromatography[4]

6. Serum free media for bulk culture of hybridoma cells

Use of serum makes purification of antibodies quite tedious. Also, such an expensive technology for large scale production of hybridoma cells for industrial production of monoclonal antibodies makes use of serum free media for culturing hybridoma cells.

Serum free media has got following advantages:

- Increased purity and absence of contaminating immunoglobulin.
- Diminished variability of culture medium.
- Reduced risk of infection.
- Fewer variables for quality control/assurance.
- Enhanced control over bioreactor conditions.
- Potential for enhanced antibody secretion and improved efficiency
- Minimal dependence on animals.
- Pocket friendly.[21]

However some disadvantages are also present:

- Serum free media is not applicable to all cell lines.
- Cells may not grow to as high densities and also may be more fragile than cells in serum.
- Media may be cumbersome to prepare[22]
7. Various parts of monoclonal antibody and their functions

Each monoclonal antibody has several parts, each serving a specific function and each providing a unique contribution to immunological sciences.

a) scFv:

scFv fragments i.e. variable domains of heavy and light chains attached by a flexible linker were first explained as small fragments which are able to retain the binding of IgG molecule. This moiety has a short half life in serum (2hr).[17]

b) Diabodies:

They are a class of bispecific antibody fragments. Their size promotes penetration of tumors and its exit from the serum. These fragments are derived from Hybridomas and provide a source of antibody fragments for medical and industrial reasons [23] Diabodies provide unfavourable Pharmacokinetic properties due to their small size [24].

c) Fab unit:

It’s composed of light chain and N terminal half of heavy chain it acts as antibody combining site. N terminal half has sequences which are different in various immunoglobulins whereas C terminal of half has similar sequences for the parts which are obtained from same subclass.[25]

d) Fc unit:

This region is responsible for binding to Fc receptors of invading pathogens/cells thus leading to immunological response.[26]

8. Uses of different monoclonal antibodies

As mentioned in the above diagram, the nomenclature of Monoclonal antibodies have been organised on the basis of their origin. For each origin of Monoclonal antibodies, there are some specified suffixes. These suffixes help us know the extent of hybridisation done to produce that antibody. Some examples are:

“Momab” for 100% Murin antibody
“Ximab” for chimeric antibody etc

Nowadays, numerous such monoclonal antibodies having appropriate nomenclature according to their origin of hybridisation and suffixes are being used in various notorious diseases.
ocytopaenia can be caused by tendency for rise in Th1 cytokines resulting in infections, cancer, autoimmune disease, and adverse reactions like Acute anaphylaxis, serum sickness. There are numerous monoclonal antibodies approved by FDA against Etanercept on 2nd May 2004.

Table 1: Uses of different monoclonal antibodies

<table>
<thead>
<tr>
<th>Generic Name</th>
<th>Trade Name</th>
<th>Antibody origin</th>
<th>Antigen</th>
<th>Approved in</th>
<th>FDA approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Murotomomab</td>
<td>Orthoclone</td>
<td>Murine, IgG2a</td>
<td>CD3</td>
<td>Allograft rejection in allogeneic renal transplantation</td>
<td>19/6/86</td>
</tr>
<tr>
<td>Abciximab</td>
<td>ReoPro</td>
<td>Chimeric, IgG1</td>
<td>GPIIb/IIIa r</td>
<td>Maintenance of coronary patency</td>
<td>22/12/94</td>
</tr>
<tr>
<td>Rituximab</td>
<td>Mabthera</td>
<td>Chimeric, IgG1</td>
<td>CD20</td>
<td>CD20-positive B-cell non-Hodgkin’s lymphoma</td>
<td>26/11/97</td>
</tr>
<tr>
<td>Daclizumab</td>
<td>Zenapax</td>
<td>Humanized, IgG1</td>
<td>CD25</td>
<td>Allograft rejection</td>
<td>10/12/97</td>
</tr>
<tr>
<td>Basiliximab</td>
<td>Simulect</td>
<td>Chimeric, IgG1</td>
<td>CD25</td>
<td>Allograft rejection</td>
<td>12/5/98</td>
</tr>
<tr>
<td>Palivizumab</td>
<td>Synagis</td>
<td>Humanized, IgG1</td>
<td>Protein F</td>
<td>Respiratory syncytial virus (RSV) inhibitor in children</td>
<td>19/6/98</td>
</tr>
<tr>
<td>Infliximab</td>
<td>Remicade</td>
<td>Chimeric, IgG1</td>
<td>TNFa</td>
<td>Crohn’s disease and rheumatoid arthritis</td>
<td>24/8/98</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>Herceptin</td>
<td>Humanized, IgG1</td>
<td>HER2/Neu</td>
<td>Metastatic breast cancer</td>
<td>25/9/98</td>
</tr>
<tr>
<td>Etanercept</td>
<td>Enbrel</td>
<td>huFc1g1/TNFFr</td>
<td>TNF alpha and beta</td>
<td>Autoimmune diseases such as anklyosing spondylitis</td>
<td>2/11/98</td>
</tr>
<tr>
<td>Gentuzumab</td>
<td>Mylotarg</td>
<td>Humanized, IgG4</td>
<td>CD33</td>
<td>CD33-positive acute myeloid leukemia</td>
<td>17/5/00</td>
</tr>
<tr>
<td>Alemtuzumab</td>
<td>Mabcampath</td>
<td>Humanized, IgG1</td>
<td>CD52</td>
<td>B-cell chronic lymphocytic leukemia</td>
<td>7/5/01</td>
</tr>
<tr>
<td>Ibritomomab</td>
<td>Zevalin</td>
<td>Mouse, IgG1</td>
<td>CD20</td>
<td>B-cell non-Hodgkin’s lymphoma</td>
<td>19/2/02</td>
</tr>
<tr>
<td>Adalimumab</td>
<td>Trudekha</td>
<td>Human, IgG1</td>
<td>TNFa</td>
<td>Crohn’s disease and rheumatoid arthritis</td>
<td>31/12/02</td>
</tr>
<tr>
<td>Alefacept</td>
<td>Amevive</td>
<td>huFc1g1/LFA-3</td>
<td>CD2</td>
<td>Chronic plaque psoriasis</td>
<td>30/1/03</td>
</tr>
<tr>
<td>Omalizumab</td>
<td>Xolair</td>
<td>Humanized, IgG1</td>
<td>IgE</td>
<td>Treatment of asthma</td>
<td>20/6/03</td>
</tr>
<tr>
<td>Tositumomab</td>
<td>Bexxar</td>
<td>Murine, IgG2a</td>
<td>CD20</td>
<td>CD20-positive B-cell non-Hodgkin’s lymphoma</td>
<td>27/6/03</td>
</tr>
<tr>
<td>Efalizumab</td>
<td>Raptiva</td>
<td>Humanized, IgG1</td>
<td>CD11a</td>
<td>Moderate to severe plaque psoriasis</td>
<td>27/10/03</td>
</tr>
<tr>
<td>Cetuximab</td>
<td>Erbitux</td>
<td>Chimeric, IgG1</td>
<td>EGFR</td>
<td>Metastatic colorectal and head and neck carcinoma</td>
<td>12/2/04</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>Avastin</td>
<td>Humanized, IgG1</td>
<td>VEGF-A</td>
<td>Metastatic colorectal and non-small cell lung carcinoma</td>
<td>26/2/04</td>
</tr>
<tr>
<td>Natalizumab</td>
<td>Tysabri</td>
<td>Humanized, IgG4</td>
<td>Integrin-a4</td>
<td>Multiple sclerosis</td>
<td>23/11/04</td>
</tr>
<tr>
<td>Ranibizumab</td>
<td>Lucentis</td>
<td>Humanized, IgG1</td>
<td>VEGF-A</td>
<td>Wet-type age-related macular degeneration</td>
<td>30/6/06</td>
</tr>
<tr>
<td>Paniyumumab</td>
<td>Vectibis</td>
<td>Human, IgG2</td>
<td>EGFR</td>
<td>Metastatic colorectal carcinoma</td>
<td>27/9/06</td>
</tr>
<tr>
<td>Eculizumab</td>
<td>Soliris</td>
<td>Humanized, IgG2/4</td>
<td>C5</td>
<td>Paroxysmal nocturnal haemoglobinuria</td>
<td>16/3/07</td>
</tr>
<tr>
<td>Certolizumab</td>
<td>Cimzia</td>
<td>Humanized, IgG1</td>
<td>TNFa</td>
<td>Crohn’s disease</td>
<td>18/4/08</td>
</tr>
</tbody>
</table>

Drugs like Etanercept, Alefacept are fusions between the IgG1 Fc portion and a receptor. Black Box Warning had been issued by FDA against Etanercept on 2nd May 08[17].

8. Adverse/harmful effects associated with use of monoclonal antibodies

Administration of mAbs leads to effects such as acute anaphylaxis, serum sickness. There are numerous adverse effects that are related to their specific targets, such as Infections, cancer, autoimmune disease, and Cardiotoxicity[8] Certain adverse reactions caused by Antibodies have been described in brief:

a) Immunological reactions:
Acute reactions following their infusion can lead to anaphylactic shock or anaphylactoid reactions against the antibodies. Ex: Cetuximab.

Reactions like Tumour lysis Syndrome, Cytokine Release Syndrome may take place due to drugs like Rituximab[27]

b) Infections:
- **Tuberculosis reactivation:**
 Therapy against pro-inflammatory cytokine TNFα has tendency for rise in latent Tuberculosis.[28] Increased risk of tuberculosis were found in patients of inflammatory bowel disease treated with TNF-specific mAbs[29]
- **Progressive Multifocal Leukoencephalopathy:**
 Humanized CD11a-specific mAb Efalizumab has been associated with these disease in patients of chronic plaque psoriasis.[30] Other drugs which may cause PML are Rituximab and Natalizumab[31, 32]

c) Haematological disorders:
Acute, severe, self-limiting thrombocytopena can be caused by Monoclonal Antibodies such as Infliximab, Efalizumab, Rituximab.[8] Also drugs like Abciximab, Alemtuzumab may also lead to fall in platelet count and lymphocyte count respectively.[33, 34] Bevacizumab has found to show Thromboembolism[35]

d) Autoimmune disorders:
Use of Monoclonal antibodies has been associated with rise of autoimmune diseases like Lupus like syndrome, Auotimmune Hyperthyroidism, Autoimmune Colitis etc[8]
e) **Cardiovascular adverse effects**: Drugs like bevacizumab, trastuzumab, pertuzumab, ofatumumab, rituximab are responsible for adverse effects on cardiovascular system and it may comprise of:

- Hypertension
- Arterial/Venous thromboembolism
- Congestive Heart failure [36]

f) **Pulmonary adverse effects**: Adverse effects can be organised into 4 main categories i.e. interstitial pneumonitis and fibrosis, acute respiratory distress syndrome, bronchiolitis obliterans organizing pneumonia, and hypersensitivity reactions. Signs, symptoms, include dyspnea, cough, fatigue, and pulmonary opacities. [36]

g) **Proteinuria**: Drugs like Bevacizumab leads to proteinuria [37] Microscopy shows thrombotic microangiography, collapsing glomerulopathy, and incidences of cryoglobulinemic and immune complex glomerulonephritis. [38]

h) **Enterotoxicity**: Enterocolitis, colitis, gastrointestinal perforation are common gastrointestinal adverse effects. [39]

i) **Dermatological**: It comprises of Papulopustular Acneiform Eruption, Paronychial Inflammation, Mucositis. [36]

9. **Future of monoclonal antibodies**

Monoclonal antibody therapy has become a burning issue for clinical treatment procedure regarding various ailments which ranges from inflammatory diseases, cancer, cardiovascular diseases, transplant rejections to infectious, metabolic and neurodegenerative diseases. The advent hybridoma technology has led to production of large scale highly specific antibodies against broad spectrum of diseases. They play crucial roles in diagnosis, disease monitoring, prognostic markers identification and Pharmacotherapy. Nowadays, Monoclonal antibody therapy is having a significant impact on malignancies of solid tissues and haematological origin. Today, combination therapy is a well-accepted tactic in tumor therapy, and they are increasingly emerging as an effective component of many therapeutic protocols. [40]

In near future, the market will be filled by these latest generation antibiotics having new class of medications, the biopharmaceuticals. These can be aimed toward the treatment of important diseases such as cancer, infections and conditions like sepsis, transplant rejection, AIDS and autoimmune diseases [6]. MAbS today lead the development of multibillion dollar biotechnology industry. Many leading pharmaceutical brands have entered the MAbS field, due to faster and pocket friendly development, higher success rates, medium pricing, and a potentially reduced threat from generics. [12]

10. **Conclusion**

Monoclonal antibodies have indeed been a marvel in the field of science. Who could have wondered that now mankind now has a befitting reply to most of the notorious diseases in the world. Nowadays, both clinicians and patients have a ray of hope that ailments like cancer, infections, autoimmune diseases can now be put into control. The topic of Monoclonal antibodies is not only a burning issue for researchers but also in the field of pharmaceutical and biopharmaceutical industries. Several advantages like reduction in development costs, reduction in time taken for manufacture, improved results have encouraged a lot to make progress in this field. It is hoped that in near future, these Monoclonal antibodies will have a profound impact on the treatment of these difficult ailments, provided if the adverse effects are also limited.

References

Das S et al / Monoclonal antibodies and its impact on modern health services – A review

