Analgesic and anti-inflammatory properties of synthesized imidazopyrinidyl-chalcones: Relationship activity and structure

  • Kouakou Sylvain Landry 1Laboratoire de Pharmacologie, UFR Sciences Pharmaceutiques, Universite FHB, 01 BP V34 Abidjan
  • Ouattara Mahama 2Departement Chimie Therapeutique et de Chimie Organique, UFR Sciences Pharmaceutiques, Université FHB, 01 BP V34 Abidjan
  • Coulibaly Songuigama 2Departement Chimie Therapeutique et de Chimie Organique, UFR Sciences Pharmaceutiques, Université FHB, 01 BP V34 Abidjan
  • Nguessan Jean Paul 2Departement Chimie Therapeutique et de Chimie Organique, UFR Sciences Pharmaceutiques, Universite FHB, 01 BP V34 Abidjan
  • Irie-N'Guessan Amenan Genevieve 1Laboratoire de Pharmacologie, UFR Sciences Pharmaceutiques, Universite FHB, 01 BP V34 Abidjan
  • Kouakou-Siransy Gisele 1Laboratoire de Pharmacologie, UFR Sciences Pharmaceutiques, Universite FHB, 01 BP V34 Abidjan
Keywords: Chalcones, pain, inflammation

Abstract

Background: The effective management of pain in clinic is still challenging practitioner because of the many side effects associated with the use of current drugs, which can even affect life quality of the patients. Chalcones are described as compounds that have various pharmacological activities such as antioxidants, anti-inflammatories, anticancer, including antifungals and antibacterials. The objective of this study was to evaluate the analgesic and anti-inflammatory properties of two (2) synthesized imidazopyridinyl-chalcones.

Materials and Methods: Imidazopyridinyl-chalcones tested V1 and V2, different by the substituent, type hydroxyl group for V1 and diethylamine for V2, were synthesized by the Department of Organic and Therapeutic Chemistry of Pharmaceutical and Biological Sciences (Côte d'Ivoire). The analgesic and anti-inflammatory activities were performed in mice and rats respectively by acetic acid-induced writhes test according to the method described by Koster et al and formalin-induced irritation test performed by Dubuisson et al.

Results: V1 and V2 showed inhibition of contortions induced by acid acetic 1%, with greater analgesic effect for V2 at lower doses, while the opposite was observed for V1. At concentration of 3.125 mg/kg b. wt., V2 was around 77.78% and V1 reach this percentage around 72.22% at 50 mg/kg b. wt., whereas that of paracetamol 100 mg/kg b. wt., used as a reference was about 48%. The anti-inflammatory effect of V2 (43.51%) was also higher compared to V1 (34.85%) at 3.125 mg/kg b. wt., but when doses increases at 12.25 mg/kg b. wt., the effect was non-significantly different to that of ketoprofen (69.98%) at 10 mg/kg b. wt., and range 48.57% and 47.73% respectively for V2 and V1.

Conclusion: Imidazopyridinyl-chalcones is a good model for the development of new molecules and it would appear that the presence of electron donor group like diethylamine is better than hydroxyl to push up analgesic and/or anti-inflammatory activities.

Downloads

Download data is not yet available.

References

Richard A., Yvanes-Thomas M., Calmels P., Bethoux F. Evaluation de la douleur. Guide des outils de mesure et d’évaluation en médecine physique et de réadaptation. Frison-Roche, édit., Paris. 2003 ; 91-6. French.

Finnerup, N. B. et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol. 2015; 14: 162–173.

Hewitt D.J., Hargreaves R.J., Curtis S.P., et al. Challenges in analgesic drug development. Clinical Pharmacology & Therapeutics. 2009; 86(4): 447-450.

Finnerup, N. B., Sindrup, S. H. & Jensen, T. S. The evidence for pharmacological treatment of neuropathic pain. Pain 2010; 150, 573–581.

Nogueira C.W., Quinhones E.B., Jung E.A.C., Zeni G., Rocha J.B.T. Anti-inflammatory and antinociceptive activity of diphenyl diselenide. Inflamm Res 2003; 52: 56–63.

Singh P., Raj R., Kumar V., Mahajan M.P., Bedi P.M.S., Kaur T., and al. 1,2,3- Triazole tethered β-lactam-Chalcone bifunctional hybrids: Synthesis and anticancer evaluation. Eur J Med Chem. 2012; 47(1): 594–600.

Jin F., Jin X.Y., Jin Y.L., Sohn D.W., and al. Structural requirements of 2’,4’,6’-tris(methoxymethoxy) chalcone derivatives for anti-inflammatory activity: the importance of a 2’-hydroxy moiety. Arch Pharm Res. 2007; 30(11): 1359–67.

Srivastava S., Sonkar R., Mishra S.K., Tiwari A., and al.: Antidyslipidemic and antioxidant effects of novel lupeol-derived Chalcones. Lipids 2013; 48(10): 1017-27.

Meotti F.C., Stangherlin E., Zeni G., Nogueira C.W., Rocha J.B.T. Protective role of aryl and alkyl diselenide on lipid peroxidation. Environ Res 2004; 94: 276-82.

Koster R., Anderson M., de Beer E.J. Acetic acid for analgesic screening. Fed Proc 1959; 18: 412-418.

Dubuisson D., Dennis S.G. The formalin test: A quantitative study injected limb, was determined at which the rat would give of the analgesic effects of morphine, meperidine, and brain stem a vocal response. Pain 1997; 4: 161-77.

Tjolsen A., Berge O.G., Hunskaar S. The formalin test: an evaluation of the method. Pain 1992; 51: 5-17.

Louhimies S. Directive 86/609/EEC on the protection of animals used for experimental and other scientific purposes. Altern Laboratory Animals: Atla 2002; 30(2): 217-219.

Vinegar R., Truax J.F., Selph J.L., Jonhston P.R. Antagonism of pain and hyperalgesia. Anti-inflammatory drugs. In: Vane JR, Ferreira SH, editors. Handbook of experimental pharmacology, 50/II. Berlin: Springer-Verlag; 1979. p. 208–12.

Tjolsen A., Hole K. Animal models of analgesia. In: Dieckson A, Besson J-M, editors. The pharmacology of pain 130/I. Berlin: Springer-Verlag; 1997. p. 1–20.

Le Bars D., Gozariu M., Cadden S.W. Animal models of nociception. Pharmacological Reviews. 2001; 53(4): 597-652.

Collier H.O.J., Dinneen LC, Johnson CA, Schneider C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. British Journal of Pharmacology. 1968; 32(2): 295-310.

Vergne P., Bertin P., Trèves R. Aspirine, douleurs et inflammation. La Revue de Médecine Interne. 2000; 21: S89-S96.

Docherty, R. J., Robertson, B. & Bevan, S. Capsaicin causes prolonged inhibition of voltage-activated calcium currents in adult rat dorsal root ganglion neurons in culture. Neuroscience 1991; 40: 513–521.

Wu, Z. Z., Chen, S. R. & Pan, H. L. Transient receptor potential vanilloid type 1 activation down-regulates voltage-gated calcium channels through calcium dependent calcineurin in sensory neurons. J. Biol. Chem. 2005; 280: 18142–18151.

Parada C.A., Tambeli, C.H., Cunha F.Q. The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience 2001; 102(4): 937-44.

Hunskaar S., Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 1987; 30: 103–14.

Tjolsen A., Berge O.G., Hunskaar S. The formalin test: an evaluation of the method. Pain 1992; 51: 5-17.

Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol. 2004; 63: 901–910.

Bartels, A.L.; Leenders, K.L. Cyclooxygenase and neuroinflammation in Parkinson’s disease neurodegeneration. Curr. Neuropharmacol. 2010; 8: 62-68.
Published
2018-12-04
How to Cite
1.
Landry K, Mahama O, Songuigama C, Jean Paul N, Genevieve I-N, Gisele K-S. Analgesic and anti-inflammatory properties of synthesized imidazopyrinidyl-chalcones: Relationship activity and structure. IJPR [Internet]. 4Dec.2018 [cited 21Jan.2019];8(11):108-14. Available from: https://ssjournals.com/index.php/ijpr/article/view/4950
Section
Research Articles